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Abstract

As LLMs scale and are extended to edge devices, the development of approaches
that can reduce the memory footprint of the LLM while limiting the drop in
performance are crucial. With quantization, memory overhead is reduced by storing
weights and activations in a lower precision. While lossless 4-bit weight-only
quantization has been achieved by AWQ, lossless 4-bit activation-only quantization
has not been achieved. We investigate two methods to achieve lossless W4A4
quantization: a mixed-precision approach and an AWQ W4A4 approach where
activations are scaled down and weights scaled up. Our findings show that achieving
lossless 4-bit activation quantization is harder than achieving lossless 4-bit weight
quantization, but that decreasing quantization group size and protecting more
salient channels can improve model perplexity.

1 Introduction

As large language models continue to advance in scale and capability, the computational and memory
resources required to train LLMs continue to grow. This isn’t much of a problem when you run
these models on the cloud and have unlimited resources, but when trying to deploy these models
on edge devices, they often don’t have the necessary resources to handle full-precision LLMs.
This necessitates the development of efficient compression techniques which use less memory and
computation, but get comparable results. Quantization has emerged as a promising solution, enabling
the reduction of model size and inference latency by representing weights and activations in lower
bit-width representations.

In this paper, we explore two approaches to achieve better quantization for both weights and acti-
vations (W4A4): (1) a mixed-precision quantization strategy, which prioritizes higher precision for
salient weights and activations, and (2) an activation-aware quantization method based on the AWQ
framework, which mitigates activation outliers by redistributing their magnitudes between activations
and weights. Our investigation is motivated by prior work that highlights the importance of protecting
salient model components and reducing the impact of outliers in the quantization process.

To evaluate these quantization strategies, we conducted extensive experiments on the LLaMA3-8B
model using WikiText-2 as a benchmark dataset. By varying key quantization parameters such
as bit-width for weights and activations, quantization group size, and the proportion of salient
channels protected in mixed-precision setups — we aimed to uncover insights into the trade-offs
between memory efficiency and model performance. Our findings highlight both the challenges and
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opportunities in achieving lossless W4A4 quantization and provide a deeper understanding of the
factors that affect quantization.

2 Background

2.1 Mixed-Precision Quantization

Mixed-precision quantization is the process of varying the bit-width across the weights of a model
based on their impact on model performance |Dettmers et al.| [2022]. Weight channels with more
impact on model performance, called "salient channels", are kept in higher precision while less
important channels are put into a lower precision. This process allows for precise tuning concerning
the trade-off between accuracy and efficiency. AWQ observes that protecting just 1% of the most
salient weights can substantially reduce quantization error and improve model performance [Lin
et al.| [2024]]. Our approach expands this idea to activations as well. In our mixed-precision model,
we identify the most salient weights and activations, the weights and activations corresponding to
activation outliers, and keep these salient weights and activations in higher precision while reducing
the precision of the non-salient weights and activations.

2.2 AWQ Activation-aware Quantization

Despite the utility of mixed-precision quantization, it is often difficult to implement in practice, as it
necessitates storing weights in a mixed-precision data type. This challenge calls for a methodology
that reduces the quantization error of the salient weights while keeping the precision of the salient
channels the same as the precision of the other weights channels.

In AWQ|Lin et al.|[2024], this is achieved by scaling up the salient weight channels before quantization.
However, this only protects the salient weight channels. To also protect the salient activations, we used
the findings from SmoothQuant. SmoothQuant indicates that activation outliers are a large contributor
to quantization error, and redistributing outlier magnitudes from activations to weights can limit
quantization error substantially |Xiao et al.|[2023]]. In our model, we use this finding to implement
AWAQ activation-aware quantization. We scale down the activations by some predetermined constant
and scale up the corresponding weights by the same constant before quantizing both. This preserves
the mathematical equivalence of subsequent operations while protecting salient activations and weight
channels.

3 Methods

All of our analyses are done on LIaMA3-8B, trained on 15T tokens. This is a decoder-only transformer
model with 32 layers and 7 weight matrices per layer. Perplexity is tested against wikitext-2. In each
of our experiments, we tuned one of four hyperparameters: the number of bits per weight, the number
of bits per activation, the quantization group size, and the percentage of salient weights to protect. In
order to compress weights and activations to lower bit representations, we adapted code from Lab 4
of MIT’s Fall 2024 course 6.5940. In this method, we psedo-quantize tensors by quantization group
size along each channel. We initialize a set of zero-point and scaling factors for each group as the
minimum value and maximum difference, both scaled to represent the range that a n-bit integer could
represent. We simulate quantization by finding the true quantized values, but we store the values in
fp32 to allow for hardware support and prevent underflow.

3.1 Mixed Precision
In order to perform mixed-precision quantization, we quantize all but the chosen percentage of salient

channels. We defined the most salient channels as those with the largest magnitude activations over
the calibration set.

32 AWQ

In order to perform AWQ, we find a set of scaling factors by channel. These scaling factors are used
to scale the weight distribution up and activation distribution down, both before quantization. In
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defined s, as the set of mean magnitudes by channel. We searched over the domain of a, which

ranged from O to 1. For each value of o, we used the calibration set to find the mean-squared error.

‘We then returned the scales with the best .

4 Results

4.1 Quantization Results

We show the results of both AWQ and Mixed-Precision quantization for differing levels of quantization
in Figure[T] We present W16A16 (weights and activations in 16 bits) as our baseline. We also perform
WB8AS, W4A8, and W8A4 quantization in order to measure the performance for as quantization gets
more aggressive. We see that we can get lossless quantization for W8AS, and see a degradation in
performance with further degrees of quantization. We identify the importance of keeping activations
in higher precision in comparison to the weights by identifying that W8A4 quantization has higher
perplexity for both AWQ and Mixed-Precision in comparison to W4A8 quantization.

4.2 Ablating Number of Activation Bits

For both AWQ and Mixed-Precision Quantization, while keeping the weights in 4 bits, we measure
the impact of the number of bits used to quantize the activations on the language modeling perplexity
of the model. For both we use group size of 128 and protect 1% of salient channels for Mixed
Precision. We find that we can have near lossless performance up to and including 6 bit activations.
For 5 bit activations see a small increase in perplexity. However, going from the 5 bit to 4 bit sees a
notable increase, suggesting that the difficulty of getting W4A4 quantization to work is in going from
5 bit to 4 bit in the activations.

4.3 Ablating Quantization Group Size

For both AWQ and Mixed-Precision Quantization, We adjust the group size used when performing
W4A4 quantization to measure its impact. We observe a clear tradeoff between efficiency and
performance: smaller group sizes lead to lower perplexity but are harder to accelerate due to the
increased processing and need for more high precision scaling and zeropoint values. Also, we still do
not recover the full precision performance for even group size 16, suggesting that a small group size
cannot be a magic bullet for low bit quantization.

4.4 Ablating Salient Channels in Mixed-Precision

For Mixed-Precision[Dettmers et al.,|2022] quantization, we examine the impact of the percentage
of salient channels preserved in full precision on perplexity. We find that while preserving more
channels in higher precision results in lower perplexity, we find that preserving even 64% of channels
does not return to baseline full precision perplexity. This illustrates the tradeoff between efficiency
and performance, since preserving more channels in higher precision requires more memory, and
shows the importance of all the weights and activations in the model since only quantizing 36% of
them with W4 A4 leads to a noticeable drop in performance. Therefore, Mixed-Precision with a high
number of salient channels protected is not a practical solution to get back full precision performance.

4.5 Distribution of Scaling Factors in AWQ

We measure all the scaling factors found from our AWQ quantization algorithm in our W4A4
quantized model and plot the distribution in Figure[5] We find that the majority of the scaling factors,
which were found via search with a calibration set of activations, are between 0.6 and 1.1. This
indicates that there are likely many ‘dormant’ channels that have small activations or little activity and
can therefore have activations scaled up or held to be the same in order to minimize the quantization
error. We also find that the distribution of scaling factors has a long tail: we get values as big as 20 as
scaling factors. This suggests that we have several channels with very large activations and benefit
from being scaled down significantly to reduce quantization error.
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Figure 1: (Left) AWQ|Lin et al.| 2024] quantization. (Right) Mixed-Precision[Dettmers et al.,[2022]]
quantization. We report perplexity on LLaMA3-8B[Grattafiori et al.,2024] on WikiText-2[Merity|
2016] for full precision (W16A16) and quantization with W8AS8, W4A8, and W8A4. For both
we use group size of 128 and protect 1% of salient channels for Mixed Precision. We see that we
get lossless performance with W8AS8 while performance degrades for the others. We see that higher
precision is more important for activations because W8A4 has higher perplexity than W4AS8 for both
quantization methods.
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Figure 2: (Left) AWQ[Lin et al.| quantization. (Right) Mixed-Precision[Dettmers et al.| [2022]
quantization. While keeping the weights in 4 bits, we measure the impact of the number of bits used
to quantize the activations on the language modeling perplexity of the model. For both we use group
size of 128 and protect 1% of salient channels for Mixed Precision. We find that we can have near
lossless performance up to and including 6 bit activations. For 5 bit activations see a small increase
in perplexity. However, going from the 5 bit to 4 bit sees a notable increase, suggesting that the
difficulty of getting W4A4 quantization to work is in going from 5 bit to 4 bit in the activations.
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Figure 3: (Left) AWQ|Lin et al.| 2024] quantization. (Right) Mixed-Precision[Dettmers et al.,[2022]]

quantization. We adjust the group size used when performing W4A4 quantization to measure its
impact. We observe a clear tradeoff between efficiency and performance: smaller group sizes lead to
lower perplexity but are harder to accelerate due to the increased processing and need for more high
precision scaling and zeropoint values. Also, we still do not recover the full precision performance
for even group size 16, suggesting that a small group size cannot be a magic bullet for low bit
quantization.

Percentage of Values Preserved vs Perplexity (W4A4) for LLaMA3-8B
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Figure 4: For Mixed-Precision[Dettmers et al., 2022]] quantization, we examine the impact of the
percentage of salient channels preserved in full precision on perplexity. We find that while preserving
more channels in higher precision results in lower perplexity, we find that preserving even 64% of
channels does not return to baseline full precision perplexity. This illustrates the tradeoff between
efficiency and performance, since preserving more channels in higher precision requires more memory,
and shows the importance of all the weights and activations in the model since only quantizing 36%
of them with W4A4 leads to a noticeable drop in performance.
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Figure 5: We plot the distribution of scaling factors found from our AWQ quantization algorithm
in our W4A4 quantized model. We find that the majority of the scaling factors, which were found
via search with a calibration set of activations, are between 0.6 and 1.1. This indicates that there are
likely many ’dormant’ channels that have small activations or little activity and can therefore have
activations scaled up or held to be the same in order to minimize the quantization error. We also find
that the distribution of scaling factors has a long tail: we get values as big as 20 as scaling factors.
This suggests that we have several channels with very large activations and benefit from being scaled
down significantly to reduce quantization error.

5 Discussion

The results show that 4-bit activation quantization performs worse than 4-bit weight quantization. We
see this from the perplexity of the W8A4 model being higher than the perplexity of the W4A8 model.

Although AWQ was able to achieve lossless 4-bit weight-only quantization |Lin et al.| [2024], we
were only able to achieve lossless 8-bit activation-only quantization. Figure [2]shows that in both the
Mixed-Precision and the AWQ approach, W4AS is lossless over W4A16. However, after this point
the perplexity starts to worsen. At W4AS, the perplexity gain is 0.2 for the Mixed-Precision model
and 0.17 for the AWQ model. At W4A4, the perplexity gain reaches 0.89 for the Mixed-Precision
model and 0.68 for the AWQ model.

Although decreasing the size of the quantization group can help recover some of this loss in per-
plexity in both the Mixed-Precision model and the AWQ model, this comes at the cost of greater
computational overhead (Figure [3). With smaller quantization groups, more quantization operations
will need to be computed. Similarly, for the Mixed-Precision model, protecting more salient channels
can help recover perplexity (Figured). However, the more salient channels protected, the less the
model size is reduced.

Another possible method to decrease perplexity, but at the cost of more computation overhead, is
channel reordering. In Figure 5] we see the distribution of scaling factors that our AWQ model
uses. The largest peak of scaling factors is around 1.1. However, there are a large number of groups
that use a scaling factor less than 1. Since a scaling factor less than 1 should increase quantization
error according to the methodology of AWQ Lin et al.| [2024]], and therefore increase perplexity, this
suggests there are a large number of dormant or unimportant groups that do not have a large impact on
model perplexity. Therefore, scaling down these groups doesn’t impact perplexity. It is possible that
since there are so many of these unimportant groups, there are important channels in some of these
groups that are getting suboptimal scaling factors due to being grouped with multiple unimportant
channels. Channel reordering on channel importance could fix this issue. For example, we could
reorder the channels based on activation magnitude before quantization, using activation magnitude
as a heuristic for channel saliency as we do in the Mixed-Precision model. By grouping the important



channels together before quantization, we would ensure that critical channels are grouped together
and that we learn high scaling factors for these channels - resulting in less quantization error on these
important channels and smaller model perplexity. After quantization, we would restore the original
channel order. While we did not have time to try channel reordering for this project, it would be
interesting to implement as a followup. It is possible that achieving lossless 4-bit activation-only
quantization doable with channel reordering, even if it comes at the cost of higher computation
overhead from the reordering process.

6 Followups

While we were only able to achieve lossless 8-bit activation-only quantization, our results are limited.
We only trained our models on the LLaMA3 8B parameter model and only used the wikitext-2 dataset.
Followups to see if lossless 4-bit activation quantization is possible should try out larger LLaMA
models, different datasets, and channel reordering.

7 Division of Work

Reece Shuttleworth created the Github repository. Reece Shuttleworth, Simon Opsahl, Ziyad Hassan,
and Nicky Medearis pair programmed to create the working Mixed-Precision and AWQ models.
Abdul-Kareem Aliu created the demo day poster.

In the written report, Ziyad wrote the Introduction section, Abdul-Kareem wrote the Background
section, Simon wrote the Methods Section, Reece wrote the Results section, and Nicky wrote the
Discussion and Followups sections.
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