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ABSTRACT

We look for sparse features in large language models (LLMs) in order to identify if
sparsity emerges in high performing systems. We have two reasons, biological and
theoretical, to believe that sparsity is important in intelligence: the human brain
is sparse and sparse representations in the form of compositional functions help
avoid the curse of dimensionality. We focus our study on the attention mechanism
inside these models and look at both the raw weight matrices and the attention
scores generated during inference. We find that weight matrices involved in atten-
tion, particularly the matrix product W, WL, have very low stable rank. We find
that the entropy of attention scores is low, implying that the attention scores are
sparse.

1 INTRODUCTION

The Merriam-Webster dictionary defines sparse as “of few and scattered elements.” (Merriam-
‘Webster). We know that the brain is sparse in many ways. The brain is activation sparse because at
any one moment, only a small percentage of neurons are firing (Barth & Poulet, 2012). The brain
is connection sparse because neurons are sparsely interconnected between each other (Hunter et al.|
2021). The brain is stimuli sparse because only a small portion of neurons are activated by any
specific stimuli (Vonderschen & Chacronl 2011). From this, we can see that sparsity presents itself
in many different ways in the brain.

The curse of dimensionality is a well-known problem in machine learning which, in its simplest
form, states that the number of parameters required to model an arbitrary function well grows ex-
ponentially in the input dimension (Poggio et al.l 2017). However, there are ways to escape this
curse. Important work has shown that if sparse representations in the form of compositional func-
tions are used instead of a dense representation, the parameters required grow linearly instead of
exponentially (Poggiol [2023).

The curse of dimensionality is relevant in machine learning because many current models operate
within high dimensional input spaces, which means that an extremely large number of parameters
would be required if using a dense representation. One class of models that escape the curse of
dimensionality are Convolutional Neural Networks (CNNs) (Krizhevsky et al.| 2012), which use
sparse compositional functions in the form of convolution filters and max pooling layers. Because
they use sparse compositional functions, CNNs enjoy the guarantee that they can scale linearly with
the input dimension.

One class of models that do not appear to escape the curse of dimensionality are transformers
(Vaswani et al., [2017)), which are the basis of Large Language Models (Brown et al., |2020) and
Vision Transformers (Dosovitskiy et al.,[2021)). These models do not use sparse compositional func-
tions and instead use dense matrix operations in the form of multi-layer perceptron or multi-head
attention layers. Remarkably, these models optimize and perform impressively well, reaching or
exceeding human performance on many tasks (OpenAll |2023), even though they lack theoretical
support to do so. Nothing reiterates this conflict more that ChatGPT(OpenAl, [2023), which has
led to paradigm shifts in huge sectors of human employment and everyday life. It operates in a
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high dimensional input space but has not run into the problems of exponentially growing parameter
requirements that the curse of dimensionality implies.

How are Large Language Models able to escape the curse of dimensionality without explicitly using
sparse compositional functions? What if, instead of being explicitly constrained to use these sparse
compositional functions, these models implicitly learned sparse representations and behavior? As
discussed above, we have biological and theoretical reasons to expect to find sparsity in neural
networks. If it is the case that optimization implicitly leads LLMs to sparse behavior, this would
provide an explanation for the performance of LLMs in lieu of the consequences threatened by the
curse of dimensionality.

We examine LLMs in order to determine if, and what, sparse behavior they have. The discovery
of sparsity would, as explained earlier, help us understand why LLMs and transformers in general
perform so well. Another key question building off the existence of sparsity is if there is sparsity
in these models, is there some specific structure or pattern to the sparsity within or across models?
The discovery that there is a structure or pattern to the sparsity would be interesting because this
would mean that all models are optimizing to a similar sparse structure without explicit constraints
to do so. These patterns could provide the basis for new methods of, or tools for, training.

2 BACKGROUND & METHODOLOGY

Prior work has looked into the multi-layer perceptron(MLP) layers of transformers for sparsity,
and found that the activations after a RELU activation function were very sparse(Li et al., 2023b).
For example, on average 3% of these activations were nonzero in the T5-Base model(L1 et al.,
2023b). They also found that sparsity emerged during training, emerged on both NLP and vision
tasks and even random inputs/labels, and that explicitly enforcing sparsity in the form of Top-k
thresholding led to several improvements in their experiments (L1 et al.,2023b). This work supports
the hypothesis that sparsity should emerge in neural networks as they become more capable, even if
they are not constrained to do so.

Instead of examining the MLP layers of transformers like (Li et al.,|2023b)), we instead examine the
attention mechanism. We do this because the attention mechanism is a key part of the transformer
architecture and is what differentiates it from other models. The attention mechanism in transformer
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for a specific can be formulated by the equation Attention(X) = So ftma;L(T)X Wil

where X is the input, de,, is the dimension of the embedding space, and Wg, W, and Wy
are, respectively, the weight matrices for the queries, keys, and values for a specific head. While
most models use Multi-Head Attention (MHA) (Vaswani et al., 2017)), which means that this above
equation is executed numerous times in parallel across different "heads’, newer models have adapted
new versions of attention, such as Multi-Query Attention (MQA) (Shazeer, 2019) and Grouped-
Query Attention (GQA) (Touvron et al.|, |2023). For our investigation, we focus on models that
only use MHA. While this decision may be a drawback because the newest and state-of-the-art
models like LLaMA-2(Touvron et al.,[2023) and MistralJiang et al.| (2023)) will not be included, this
simplifies the comparison across models because models using MQA frequently differ in the number
of groups they use.

Two models that use MHA, are open-source, and have strong performance are the Phi-1.5(Li et al.,
2023a) and MPT-7B(Team), |2023) models. Phi-1.5 is a 1.3 billion parameter model trained on text-
book quality data (L1 et al., 2023a). MPT-7B is a 6.7 billion parameter model that was trained on
1 trillion tokens(Team) [2023). We select these two models to investigate because of the reasons
mentioned above and because while they have impressive performance, they are small enough that
they can be run using our limited compute resources. Inside these two models, we study their at-
tention mechanisms by examining both the raw weight matrices inside their attention layers and the
attention scores they generate during inference.

We examine the raw weight matrices in the attention mechanism of these models by calculating their
stable rank. Stable rank can be defined by the equation StableRank(M) = % where M

is the matrix, (o1, ..., 0,,) are the singular values of the matrix, and o is the biggest singular value

1adapted from (Vaswani et al.| [2017), where the queries are Q = X W, keys are K = X Wk, and values
are V = XWy.
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in M. This function ranges from 1 to n, with its value being close to 1 if there is one large singular
value, and close to n if all singular values have similar magnitude. Because of this, we can think of
this value as describing the number of ’important’ dimensions in a weight matrix. Therefore, we can
claim that the lower the stable rank, the sparser the matrix. While prior work has used the singular
values of weight matrices to do spectral analysis in order to determine if a weight matrix is under- or
over-trained (Martin et al., 2021), to our knowledge no one has calculated the stable rank of weight
matrices in order to calculate their sparsity.

We examine the attention scores generated by these models during inference by calculating the en-

tropy of the attention scores of the last token across the entire input. We define attention scores to be

T T
the output of the equation AttentionScores(X) = So ftmax(%). Note that this is part

of the attention equation described above, but without being multiplied by X Wy . We define entropy
using by the equation H(A) = — > | p(a;)log(p(a;)), where A = AttentionScores(X),, is of
size n and contains the attention scores of token n across the entire input. Importantly, because of
the softmax function the attention scores sum to 1, ensuring that our attention scores can be treated
as a probability distribution as required.

Entropy is a useful measure here because it is an effective proxy for sparsity, and we use this to
claim that the lower the entropy, the sparser the attention scores. This is because the maximum
the entropy can be for a probability distribution is when there is an equal probability assigned to
every possible outcome (in our case, this is the n tokens). As probabilities become more and more
concentrated, and therefore sparser, the entropy of the probability distribution decreases. Since our
attention scores are our “probabilities’, we can see here that this is the behavior we want, since the
more concentrated the attention scores become, the sparser they are.

layers | heads | d¢y,, | Parameters
Phi-1.5 24 32 64 1.3 Billion
MPT-7B 32 32 128 | 6.7 Billion

Table 1: Details about the two models we examine, Phi-1.5 (Li et al., |2023a) and MPT-7B (Team,
2023).

3 STABLE RANK OF ATTENTION MATRICES

For each layer and each head of MHA, we calculate the stable rank of four matrices: Wg, Wk,
Wy, and WoW L. We calculate the product W W because although this value is not stored as
an actual matrix or is ever even calculated during inference, it can be seen as the crucial matrix
multiplication for self-attention, since the self-attention operation is X WoWZ X7, Our calculated
values are provided in Table 2&3]

As we can see in these tables, the Stable Rank of W4y, is high. This makes sense, because this
matrix is used to represent the tokens in the embedding space and therefore should be expected to
span that space reasonably well. Interestingly, however, is the fact that W and Wy appear to have
lower stable rank and plummet in the last layer for both models. Even more interestingly, the matrix
product WQWE has extremely low stable rank for all layers and in both models. This indicates
sparsity in the attention mechanism of these models.

Importantly, this sparsity is not present during initialization: initializing a matrix the same size as
the individual matrices of each model across 10 random seeds resulted in a stable rank of 46.70 for
Phi-1.5 and 93.29 for MPT-7B. This indicates that these attention matrices become sparse in their
stable rank during optimization.

4 ENTROPY OF ATTENTION SCORES

In order to calculate attention scores, we need to do inference with text data points. For our dataset,
we elect to use TinyStories (Eldan & Li}[2023)), a set of simple stories that were generated from GPT-
4 (OpenAl, 2023)). In order to be consistent when comparing across data points, we select a constant
number of tokens to use for each data point that is used for inference. We choose this number to
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be 200 tokens by eliminating examples with less than 200 tokens and truncating examples with
more than 200 tokens. This truncation should not effect model performance, because the models
are trained autoregressively and therefore would have been trained to do next token prediction on
truncated sentences. We sample 1000 sentences, do inference, and for each layer and each head,
we calculate the entropy of the attention scores of the last token only. We use the last token only
because, due to autoregressive property of these models, other tokens do not pay attention to the
whole input due to masking. Our calculated entropy values can be viewed in Figure|[T]

It is difficult to scrutinize entropy values on their own. Because of this, it is helpful to use analogous
sparsity levels in our analysis. We define these sparsity levels to be the entropy of a probability dis-
tribution which has x% zero values and an even probability distribution over the remaining (100-x)%
non-zero values. For example, for the 90% sparsity level, we calculated the entropy of a probability
distribution in which 90% of its values were zero and an even probability distribution across the
remaining 10%.

Given these analogous sparsity levels, we can see that most of the averages and indeed many of the
heads fall between the 90% and 99% sparsity levels. This suggests that most of the entropy values
calculated are analogous to being 90-99% sparse. This is a high degree of sparsity. However, we
must reiterate that these sparsity levels are merely analogies that were created to understand the
entropies more easily. They should not be treated as causal evidence that the attention scores have a
certain sparsity.
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Figure 1: Graphs containing calculated entropy values, averaged over 1000 data points, for Phi-
1.5(left)(Li et al.l 2023a) and MPT-7B(right)(Teaml 2023). Blue dots represent a certain head within
that layer, and the black line is the average across heads. The dotted lines correspond to their
respective analogous sparsity levels, which assume an even probability distribution over non-zero
values.

5 CONCLUSIONS

We examined the raw weight matrices and the attention scores generated during inference within
the attention mechanisms of two models, Phi-1.5 and MPT-7B. We found both to be sparse in the
stable rank of their attention matrices, particularly the matrix product Wy, Wg We found that the
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entropies of the attention scores generated during inference can be interpreted as falling between
90% and 99% sparsity levels by using analogous sparsity levels.

These results suggest that sparse features do appear in transformers and that they appear during
optimization. Because of this, these results suggest a possibility of how transformers escape the
curse of dimensionality: by optimizing into sparsity.

5.1 FUTURE WORK

There are several interesting directions to take this work. One obvious direction would be to scale
these experiments up to more models, including new state-of-the-art models that use things like
GQA. There are also a few interesting experiments that could be conducted: since we have observed
that the attention matrices have low stable rank and entropy, what effect would forcing the attention
matrices to be low rank approximations of themselves cause on the overall loss and performance
of the model? What about using the Sparsemax (Martins & Astudillo, |2016) function instead of
Softmax in attention? Also, could we train new models with constrained low rank approximations
for their attention matrices and reach similar performance while also using fewer parameters?
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Phi-1.5 (64 is maximum here)
Layer | W Wi | Wy | WoWE
16.38 | 14.42 | 37.75 3.52
23.36 | 19.11 | 39.09 4.26
25.04 | 21.84 | 37.81 5.97
23.43 | 2098 | 33.18 7.76
22.39 | 21.07 | 37.21 6.24
25.35 | 23.43 | 36.27 8.74
25.23 | 22.14 | 34.37 7.12
24.5 | 22.69 | 33.75 7.49
22.84 | 20.77 | 37.01 7.06
22.63 | 19.86 | 38.14 5.93
22.53 | 20.48 | 37.3 4.8
21.67 | 19.71 | 35.67 3.94
21.34 | 20.55 | 36.88 5.45
20.56 | 19.26 | 38.9 4.02
20.54 | 20.09 | 39.57 431
1896 | 19.53 | 39.36 4.4
18.32 | 20.05 | 39.96 4.31
18.32 | 20.13 | 38.88 4.0
16.15 | 17.22 | 40.0 3.24
14.62 | 16.29 | 38.33 34
16.69 | 16.07 | 42.16 3.5

14.8 | 14.49 | 41.6 3.01
7.27 | 10.59 | 42.69 2.57
1.87 473 | 39.73 1.6

[ NS NS I (O I NS N R e el e e e
FORN RSO0 AN RN~ PRI AW~

Table 2: Stable rank for each of {WQ,WK,WV,WQ W%} in each layer averaged across heads for
Phi-1.5 (L1 et al.l [2023a). Note that the maximum value stable rank could be is d,,;, Which is 64
here.
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MPT-7B (128 is maximum here)
Layer | Wo | Wk | Wy | WoWZ
4.83 475 | 32.93 2.61
17.1 15.36 | 29.51 9.23
14.12 | 14.48 | 26.83 6.49
15.34 | 18.47 | 32.22 6.49
19.97 | 25.39 | 39.85 9.8
20.24 | 27.72 | 45.38 8.23
19.85 | 25.87 | 45.46 8.91
22.24 | 32.65 | 49.82 10.51
24.63 | 35.41 | 52.05 10.6
26.22 | 39.53 | 53.6 11.6
30.98 | 42.31 | 58.59 14.26
30.07 | 43.08 | 57.72 12.73
30.58 | 45.68 | 56.78 14.04
30.93 | 47.89 | 57.03 12.71
30.9 | 42.23 | 62.22 10.28
3174 | 419 | 68.04 9.77
30.72 | 42.31 | 66.6 8.58
31.44 | 42.07 | 63.62 7.64
31.63 | 39.41 | 63.02 7.39
31.85 | 39.96 | 63.83 7.68
32.17 | 42.23 | 58.94 6.82
33.5 | 40.98 | 60.4 7.46
32.35 | 39.59 | 53.18 7.42
32.53 | 36.54 | 55.63 7.62
29.86 | 32.35 | 53.91 6.56
31.69 | 33.79 | 54.62 7.74
27.86 | 28.15 | 54.56 7.02
30.67 | 32.78 | 559 7.32
28.36 | 32.37 | 54.83 6.96
31.64 | 37.98 | 51.59 8.37
3147 | 4144 | 47.18 9.93
4.03 4.18 | 24.24 2.27

[OSIRUSIIUL TN O I NS T (O I (O I N I NS I NS R N R S B N B e e Y
PO O O AN N PEO NN, 0O AN NDERN =PI N R W —

Table 3: Stable rank for each of {WQ,WK,WV,WQ Wg} in each layer averaged across heads for
MPT-7B (Team), 2023). Note that the maximum value stable rank could be is d.;,,, Which is 128
here.
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Phi-1.5: Stable Rank of Wv. (note: the maximum stable rank would be 64)

Phi-1.5: Stable Rank of Wq. (note: the maximum stable rank would be 64)
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Figure 2: Graphs containing calculated stable rank values for Phi-1.5(Li et al., 2023a). Blue dots

represent a certain head within a layer, and the black line is the average across heads.
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MPT-7B: Stable Rank of Wq. (note: the maximum stable rank would be 128}
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Figure 3: Graphs containing calculated stable rank values for MPT-7B(Team, 2023). Blue dots

represent a certain head within a layer, and the black line is the average across heads.
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