
A neural network solves, explains, and generates university
math problems by program synthesis and few-shot learning at
human level
Iddo Droria,b,1, Sarah Zhangc, Reece Shuttlewortha , Leonard Tangd, Albert Lua , Elizabeth Kea, Kevin Liua, Linda Chena, Sunny Trana ,
Newman Chengb , Roman Wangb , Nikhil Singhe , Taylor L. Pattif, Jayson Lynchg, Avi Shporerh , Nakul Vermab, Eugene Wub, and
Gilbert Strangc

Edited by Jeffrey Ullman, Stanford University (Retired), Stanford, CA; received January 3, 2022; accepted June 13, 2022

We demonstrate that a neural network pretrained on text and fine-tuned on code sol-
ves mathematics course problems, explains solutions, and generates questions at a
human level. We automatically synthesize programs using few-shot learning and
OpenAI’s Codex transformer and execute them to solve course problems at 81%
automatic accuracy. We curate a dataset of questions from Massachusetts Institute of
Technology (MIT)’s largest mathematics courses (Single Variable and Multivariable
Calculus, Differential Equations, Introduction to Probability and Statistics, Linear
Algebra, and Mathematics for Computer Science) and Columbia University’s Com-
putational Linear Algebra. We solve questions from a MATH dataset (on Prealgebra,
Algebra, Counting and Probability, Intermediate Algebra, Number Theory, and Pre-
calculus), the latest benchmark of advanced mathematics problems designed to assess
mathematical reasoning. We randomly sample questions and generate solutions with
multiple modalities, including numbers, equations, and plots. The latest GPT-3 lan-
guage model pretrained on text automatically solves only 18.8% of these university
questions using zero-shot learning and 30.8% using few-shot learning and the most
recent chain of thought prompting. In contrast, program synthesis with few-shot
learning using Codex fine-tuned on code generates programs that automatically solve
81% of these questions. Our approach improves the previous state-of-the-art auto-
matic solution accuracy on the benchmark topics from 8.8 to 81.1%. We perform a
survey to evaluate the quality and difficulty of generated questions. This work auto-
matically solves university-level mathematics course questions at a human level and
explains and generates university-level mathematics course questions at scale, a mile-
stone for higher education.

neural networks j mathematics courses j answering , explaining , and generating questions

Until this work, it was widely believed that neural networks could not solve advanced
mathematics problems (1). However, the previous unsuccessful studies used only text-
based pretraining. We now demonstrate that a neural network, OpenAI Codex, that is
pretrainedon text and fine-tuned on code automatically answers 81% of university-level
mathematics problems by program synthesis using few-shot learning.
Fig. 1 illustrates several example problems: computing the volume generated by

rotating the graph of a single variable function around an axis, computing the Lorenz
attractor and its projection, and computing and demonstrating the geometry of a
singular-value decomposition (SVD). We show that a single machine-learning model
can solve these example problems and solve a wide variety of mathematics courses at
scale.

Related Work. Transformers are deep-learning architectures based only on attention
mechanisms (2) that do not use recurrent neural networks or convolutional neural net-
works. Transformer-based language models have enjoyed tremendous success across
various natural language-processing (NLP) tasks, including zero-shot and few-shot lan-
guage tasks (3). However, these models have largely failed to solve math problems
(4–6). In particular, previous work using transformers, such as GPT-3 (3), has failed to
solve mathematics problems because the transformers were pretrained on text alone.
Using few-shot learning and chain-of-thought (CoT) prompting (7) improves the
mathematical reasoning ability of GPT-3; however, without code, GPT-3 with few-
shot learning and CoT still fails on university-level mathematics problems and the
MATH benchmark.

Significance

We demonstrate that a neural
network automatically solves,
explains, and generates university-
level problems from the largest
Massachusetts Institute of
Technology (MIT) mathematics
courses at a human level. Our
methods combine three
innovations: 1) using recent neural
networks pretrained on text and
fine-tuned on code rather than
pretrained on text; 2) few-shot
learning synthesizing programs
that correctly solve course
problems automatically; and 3) a
pipeline to solve questions,
explain solutions, and generate
new questions indistinguishable
by students from course
questions. Our work solves
university-level mathematics
courses and improves upon state-
of-the-art, increasing automatic
accuracy on randomly sampled
questions on a benchmark by
order of magnitude. Implications
for higher education include roles
of artificial intelligence (AI) in
automated course evaluation and
content generation.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution License 4.0 (CC BY).
1To whom correspondence may be addressed. Email:
idrori@mit.edu.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2123433119/-/DCSupplemental.

Published August 2, 2022.

PNAS 2022 Vol. 119 No. 32 e2123433119 https://doi.org/10.1073/pnas.2123433119 1 of 10

RESEARCH ARTICLE | COMPUTER SCIENCES OPEN ACCESS

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

https://orcid.org/0000-0002-6387-8780
https://orcid.org/0000-0002-1212-9499
https://orcid.org/0000-0002-6930-0349
https://orcid.org/0000-0002-8725-7612
https://orcid.org/0000-0003-1049-1096
https://orcid.org/0000-0003-4465-6469
https://orcid.org/0000-0002-1836-3120
https://orcid.org/0000-0001-8511-7862
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:idrori@mit.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123433119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123433119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2123433119&domain=pdf&date_stamp=2022-08-02

Pretraining a transformer is computationally expensive and
often involves vast amounts of unlabeled data. The most com-
mon optimization objectives for pretraining language models are

1) masked word prediction, predicting a random deleted word in
a sentence or predicting the next word, and 2) classifying whether
two sentences follow each other. This computationally expensive

Fig. 1. We apply a neural network, OpenAI Codex, to solve, explain, and generate mathematics problems. We randomly sample the input math problems
from MIT and Columbia University courses and the MATH dataset (Left). We use zero-shot and few-shot learning to automatically generate programs that
solve 81% of the questions. We then use Codex to explain the generated programs. The generated programs can output diverse forms of answers, like
printing a numerical answer or generating a plot (Right): for example, in Calculus, the volume generated by rotating the finite two-dimensional region
bounded by two two-dimensional graphs about the plotted axis (Top Right); in Differential Equations, the Lorenz strange attractor (Middle Right); in Linear
Algebra, the geometry of the SVD (Middle Right). An example of Codex’s ability to produce line-by-line explanations of synthesized programs is demonstrated
for a problem from Introduction to Probability and Statistics (Bottom Right).

Fig. 2. We select a random sample of questions from each course or topic that do not contain input images or require proofs. A language model pre-
trained on text (GPT-3 text-davinci-002) automatically solves only 18% (for courses) and 25.5% (for the MATH benchmark topics) of these questions. In con-
trast, using zero-shot learning with a network pretrained on text and fine-tuned on code (OpenAI Codex code-davinci-002), we synthesize programs that
automatically solve 71% (for courses) and 72.2% (for the MATH benchmark topics) of the questions. Using the same network but using few-shot learning, we
automatically solve 81% (for courses) and 81.1% (for the MATH benchmark topics) of the questions. We use the nearest embedded zero-shot questions and
their synthesized code for few-shot learning. The remaining 19% of the course questions and 18.9% of MATH benchmark topic questions are manually
prompted to solve the question.

2 of 10 https://doi.org/10.1073/pnas.2123433119 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

step is usually done once, followed by a relatively fast fine-tuning
step. In fine-tuning, the pretrained model is tuned using a spe-
cific dataset or task.
This work demonstrates that OpenAI’s Codex (8), a trans-

former that has been pretrained on text and then fine-tuned on
code, generates programs (i.e., conducts program synthesis)
that solve math problems at scale and, with few-shot learning,
automatically solves 81% of the math course problems.
Previous work has seen modest success on simpler or special-

ized mathematics problem benchmarks. Techniques based on
cotraining output to verify (9, 10) or predict expression trees
(11–16), such as MAWPS and Math23k, are able to solve ele-
mentary school-level math problems with over 81% accuracy.
However, these approaches do not extend to high-school, math
Olympiad, or university-level courses. Cotraining paired with
graph neural networks (GNNs) to predict arithmetic expression
trees is able to solve university-level problems in machine learn-
ing (17) with up to 95% accuracy. However, that work is lim-
ited to numeric answers and overfits a specific course, which
does not generalize to other courses.

Major Contributions. Our main contribution, as shown in
Fig. 2, is demonstrating that a single neural network model,
OpenAI Codex, automatically solves 81% of randomly selected
university-level mathematics problems (from six Massachusetts
Institute of Technology [MIT] mathematics courses and one
Columbia University course) by using program synthesis and
few-shot learning. We also automatically explain the solutions
and generate new questions, a process requiring only seconds per
problem. The courses are listed in Table 1. We randomly sample
25 questions per course, and the problems are solved as is or with
minor contextual information that is automatically applied. The
neural network outputs an executable program that answers the
problem when prompted with the question. Furthermore, our
method explains the solutions and generates new problems nearly
indistinguishable from human-written problems.

This methodology increases the solution accuracy on the
MATH benchmark (5) from 8.8% accuracy using previous
state-of-the-art methods to 81.1% accuracy using automatic
few-shot learning. The MATH benchmark measures the math-
ematical problem-solving ability of neural network models with

Table 1. Example questions and solutions from six MIT courses (18.01, 18.02, 18.03, 18.05, 18.06, 6.042), one
Columbia University course (COMS3251), and six topics from the MATH dataset. The solutions can contain
numerical answers, equations, plots, or other modalities

ID Course Question Solution

1 18.01 Single
Variable Calculus

A bacteria population is 4,000 at time t = 0 and its rate of growth
is 1,000 * 2tbacteria per hour after t h. What is the population
after 1 h?

4000 þ 1000
logð2Þ

2 18.02 Multivariable
Calculus

Describe the graph of the function f:
fðx,yÞ ¼ 10�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

3 18.03 Differential
Equations

Find general solutions of the differential equations. If an initial
condition is given, find the corresponding particular solution.
Throughout, primes denote derivatives with respect to x. y0 +
y = 2, y(0) = 0.

y(x) = 2(1 � e�x)

4 18.05 Introduction to
Probability and
Statistics

Calculate the probability of getting a three-of-a-kind poker hand. 0.021128

5 18.06 Linear Algebra Find a combination x1w1 + x2w2 + x3w3 that gives the zero vector
with x1 = 1. w1 is the vector (1;2;3). w2 is the vector (4; 5; 6). w3

is the vector (7; 8; 9).

x1 = 1, x2 = �2, x3 = 1

6 6.042 Mathematics for
Computer Science

Find a number x ∈ f0, 1, ..., 112g such that 11x ≡ 1 (mod 113). 72

7 COMS3251
Computational Linear
Algebra

Given a d-dimensional nonzero vector v, compute the rank of the
matrix vv0.

1

8 MATH Prealgebra What is the greatest common factor of 84, 112, and 210? 14
9 MATH Algebra Let N, O be functions such that N (x) = 2

ffiffiffi
x

p
, and O(x) = x2. What

is N (O(N (O(N (O(3))))))?
24

10 MATH Number Theory How many four-digit numbers whose digits add up to 9 are
divisible by 11?

0

11 MATH Counting and
Probability

A standard six-sided fair die is rolled four times. The probability
that the product of all four numbers rolled is a perfect square
is m

n , where m and n are relatively prime positive integers. Find
m + n.

187

12 MATH Intermediate
Algebra

Given that x2 + y2 = 14x + 6y + 6, find the largest possible value
of 3x + 4y.

73

13 MATH Precalculus If the six solutions of x6 = �64 are written in the form a + bi,
where a and b are real, find the product of those solutions
with a > 0.

4

PNAS 2022 Vol. 119 No. 32 e2123433119 https://doi.org/10.1073/pnas.2123433119 3 of 10

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

challenging problems sourced from high-school math competi-
tions, such as the AMC 10,* AMC 12, and AIME.†

The methods we propose are simple and broadly applicable.
The first one uses a transformer model pretrained on text and
fine-tuned on code so that it is adept at synthesizing program-
matic solutions. The second one uses zero-shot learning of the
questions as is or automatically added contextual information
about the problem or program. The third one uses few-shot
learning based on question–code pairs of similar questions that
have been solved, found by using the cosine similarity of the
question embeddings.

Methods

Dataset. We randomly sample 25 questions from each of the seven courses:
MIT’s 18.01 Single Variable Calculus, 18.02 Multivariable Calculus, 18.03 Differ-
ential Equations, 18.05 Introduction to Probability and Statistics, 18.06 Linear
Algebra, and 6.042 Mathematics for Computer Science and Columbia Univer-
sity’s COMS3251 Computational Linear Algebra. For the MATH dataset, we ran-
domly sample 15 questions from six topics in the dataset (Algebra, Counting &
Probability, Intermediate Algebra, Number Theory, Prealgebra, and Precalculus).
We validate that our results are not merely overfitting training data by solving
questions from a new Computational Linear Algebra course COMS3251 that is
unavailable online and was unseen by Codex when trained. We automatically
obtain correct answers for 81% of the randomly sampled university math course
questions and 81.1% of the MATH benchmark questions. Before this work, the
previous state of the art on this benchmark was 8.8% (4).

Workflow. Our method takes a course problem as input and synthesizes a pro-
gram that, when run, outputs the solution. Fig. 3 compares the percentage of
automatically solved questions for each course using our zero-shot learning and
few-shot learning approaches with the latest GPT-3 (text-davinci-002) and Codex
(code-davinci-002) versions. The error bars on the totals are SEs.

Fig. 4 shows examples of automatic workflows for solving course questions
and generating explanations using Codex. The panels show the original ques-
tion, the automatic augmentation with context, the resulting synthesized pro-
gram, the executed output answer that is the solution, and the explanation of
the solution program. Questions are given to Codex either as is or by

automatically adding minor context, as described below. The output answer may
be of numerous modalities. In the examples featured in Fig. 4, the output
answers are an equation (18.01), a Boolean value (18.02), a plot (18.03), a
numerical value (18.05), and a vector (18.03 and 18.06).

Automatic Contextualization.
Programming language context. Best results are obtained when the Codex
prompt specifies that a program should be written and specifies which program-
ming language should be used. We add the text “write a program” before the
question and focus on the Python programming language by placing the text
within Pythonic triple quotes like a docstring.
Library context. Likewise, the best results are obtained when the Codex prompt
specifies which programming package should be used. For instance, we may
add the Python library SymPy as context (Fig. 4, Top, 18.01), specifying that the
program synthesized to solve the problem should use this package.

Fig. 5 shows the Python programming packages used by each course. Each
colored stacked bar represents the number of questions in the class using that
package. All courses use NumPy and Sympy. Matplotlib is used in classes with
questions that require plotting. Around half of the courses use math, random,
and SciPy. The usage patterns of these courses are incorporated automatically in
our approach, as we specify only SymPy or plot-related imports; these other
package imports are automatically synthesized.

Automatic Zero-Shot and Few-Shot Learning. Zero-shot learning synthe-
sizes a program from the original question or the automatically augmented
question without examples. This method automatically solves 71% of the ques-
tions. Next, we describe the few-shot learning process in detail. If the question is
not solved, we do the following: we embed all the questions using OpenAI’s
text-similarity-babbage-001 embedding engine, which embeds the questions
onto a 2,048-dimensional space. Then, we calculate the most similar solved
questions to the unsolved question from within its course using the cosine
similarity of the embeddings. We take the most similar question and its corre-
sponding code and use these as few-shot examples for the new question. If the
generated code does not output the correct answer, we add another solved
question–code pair, using the next similar solved question each time. We found
that using up to five examples for few-shot learning works well in practice,
increasing the total number of questions automatically solved from 71% using
zero-shot learning to 81% using few-shot learning. Fig. 4 (18.02) demonstrates
few-shot learning.
Simulation. Fig. 4 (18.05) shows an example from Probability and Statistics
where the question is turned into a probabilistic programming task that gener-
ates simulations to compute an empirical statistic.

Codex Few−ShotCodex Zero−Shot GPT−3 Few-Shot and CoT

0.00

0.25

0.50

0.75

1.00

18
.0

1

18
.0

2

18
.0

3

18
.0

5

18
.0

6

6.
04

2

C
O

M
S3

25
1

To
ta

l

MIT Mathematics Courses and a New Columbia Course

A
ut

om
at

ic
 S

ol
ve

−R
at

e

A

Al
ge

br
a

C
ou

nt
in

g
&

Pr
ob

ab
ilit

y
In

te
rm

ed
ia

te
Al

ge
br

a

N
um

be
r

Th
eo

ry
Pr

ea
lg

eb
ra

Pr
ec

al
cu

lu
s

To
ta

l

MATH Benchmark

GPT−3 Zero-Shot

B

Fig. 3. Comparison of the automatic solve rates on (A) MIT math courses and a Columbia University course and on (B) MATH benchmark dataset. The latest
OpenAI GPT-3 (text-davinci-002), a transformer pretrained on text, achieves on the MIT math courses (A) 18.8% with zero-shot and 30.8% with few-shot and
CoT and on the MATH benchmark (B) 25.5% with zero-shot and 42.2% with few-shot and CoT. In contrast, program synthesis using the latest OpenAI Codex
(code-davinci-002), a transformer pretrained on text and fine-tuned on code, achieves automatic solve rates on the MIT math courses of (A) 71.1% with zero-
shot learning and 81.1% with few-shot learning and on the MATH benchmark (B) 72.2% with zero-shot learning and 81.1% with few-shot learning.

*American Mathematics Competitions.

†American Invitational Mathematics Examination.

4 of 10 https://doi.org/10.1073/pnas.2123433119 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

Manual Prompt Modification.
Question tidying. While 81% of the questions are automatically solved by
zero-shot and few-shot learning, 19% of the questions may require manual
editing to be solved by Codex. These questions may be vague or contain
redundant information (e.g., reference movie characters or current events)
and require tidying to extract the essence of the question. Question tidying

primarily involves removing redundant information, breaking down long
sentence structures into smaller components, and converting prompts into
a programming format.
Interaction for visualization. Another form of manual prompting occurs when
an answer involves a plot and requires multiple steps to generate a visually
pleasing and clear plot. These special cases, which are among the remaining

Fig. 4. Example pipelines automatically solve questions from MIT mathematics courses and explain the solutions. In the 18.01 Single Variable Calculus
Zero-Shot example, given a question and the automatically generated prefix “using SymPy,” Codex is prompted and outputs a program. Running the pro-
gram results in equations that are the correct answer. The program is then fed to Codex again with an automatic prompt, resulting in a generated code
explanation. In the 18.02 Multivariable Calculus Few-Shot example, given a question, the prefix “write a program using SymPy” is automatically generated.
The question is embedded with the other zero-shot questions in the course. The nearest zero-shot question and its corresponding code are used as a few-
shot example. The few-shot example pair and the input question are fed into Codex, which generates a program that solves the question. The question, pro-
gram, and prompt for explanation are fed into Codex to generate the explanation. In the 18.03 Differential Equations Zero-Shot example, the answer is
both a vector and a plot. In the 18.05 Introduction to Probability and Statistics Zero-Shot example, given the question, a probabilistic program is generated
by adding “using simulation” to the prompt. In the 18.06 Linear Algebra Zero-Shot example, the output answer is the correct vector.

PNAS 2022 Vol. 119 No. 32 e2123433119 https://doi.org/10.1073/pnas.2123433119 5 of 10

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

19% of the questions, require interactively prompting Codex until reaching the
desired visualizations.

Automatic Explanation. Explanations are generated automatically using the
question, the code generated by Codex when prompted with the question, and
a prompt consisting of three quotes followed by the text “Here is what the above
code is doing: 1.” This prompt is given after both the question and the gener-
ated code since the code may be a lossy representation of the question. The
result is a step-by-step explanation of the solution code given to Codex.

Generation of Questions and Their Human Evaluation. We also use
Codex to generate new questions for each course. This is done by creating a
numbered list of human-written questions from each class. This list is cut off after
a random number of questions, and the result is used to prompt Codex to gen-
erate the next question. This process is repeated to create many new questions
for each course.

To evaluate the generated questions, we survey MIT students who have taken
these courses or their equivalents to compare the quality and difficulty of
machine-generated questions with human-written questions for each of the
courses. The Institutional Review Board (IRB) that approved the survey is MIT IRB
Exempt Id E-3792. The survey was optional and included informed consent, with
the following description: “We are conducting a survey to assess the quality and
difficulty of automatically generated questions for science, technology, engineer-
ing, and mathematics (STEM) courses. You will be presented with a series of
blocks consisting of questions, either human-written (taken from an actual
course) or generated with machine learning, but you will not be told the source
of a given question. For each question, you will be asked (a) whether you think
the question is human-written or machine-generated, (b) whether the question
is appropriate for the given course, and finally, (c) how you would rate the

difficulty of the question. Please carefully read each question and answer to the
best of your ability.” We randomly sampled five original, human-written ques-
tions and five generated questions for each of the six MIT courses. Students are
asked to read these 10 questions per course in the survey, mixed and presented
randomly.

For each of the 60 questions, the students are asked 3 survey questions:
1) “Is the question human-written or machine-generated?”, 2) “Is the question
appropriate or not appropriate for the specific course?”, and 3) “What is the
question’s difficulty level on a scale between 1 (easiest) and 5 (hardest)?”. An
example of this survey format is given in Fig. 6. The students are asked to pro-
vide their ratings and not solve the questions. The survey is conducted online
and anonymously.

Results

Questions Solved. We solve 265 questions, 213 of them auto-
matically, as described in SI Appendix. These 265 questions
include 25 randomly sampled questions from each of the seven
courses (18.01/18.02/18.03/18.05/18.06/6.042/COMS3251) and
15 randomly sampled questions for each of the six topics in the
MATH dataset (Prealgebra/Algebra/Number Theory/Counting
and Probability/Intermediate Algebra/Precalculus). The break-
down of automatic solve rate by zero-shot and few-shot learning
using Codex compared with GPT-3 and GPT-3 with CoT is
shown in Fig. 3. Programs involve step-by-step commands; there-
fore, CoT is inherent in programs.

Visualization of Embedded Questions. We embed the 175
mathematics course questions onto a 2,048-dimensional
space using OpenAI’s text-similarity-babbage-001 embed-
ding engine, which captures semantic similarity between
texts. We then use uniform manifold approximation and
projection (UMAP) (18,19) to reduce the dimensionality of
the 175 question embeddings to 2. Fig. 7, the plot of these
two dimensions, shows that the embedded questions are
clustered by course topics. We see clusters of questions rep-
resenting linear algebra from MIT’s 18.06 Linear Algebra
and Columbia’s COMS3251 Computational Linear Algebra
in Fig. 7, Top Right. In Fig. 7, Left, we see a collection of the
questions representing calculus from MIT’s 18.01 Single
Variable Calculus, 18.02 Multivariable Calculus, and 18.03
Differential Equations. In Fig. 7, Bottom Right, we see a clus-
ter of the questions from MIT’s 18.05 Introduction to Prob-
ability and Statistics and 6.042 Mathematics for Computer
Science, covering probability and statistics.

0

10

20

30

18.03 18.01 18.02 COMS3251 18.05 18.06 6.042
Course

C
ou

nt

Library

math

matplotlib

mpl_toolkits

networkx

numpy

random

scipy

sympy

Fig. 5. Imported Python programming libraries by course: NumPy is used
by nearly all courses. Matplotlib is used in courses with questions that
involve plotting. Sympy is used by most of the courses and SciPy by half of
the courses.

Fig. 6. Student survey example question: For each of 60 questions, students are asked 1) if the question is human written or machine generated, 2) if the
question is appropriate or inappropriate for the course, and 3) to rate the difficulty level of each question on a scale between 1 (easiest) and 5 (hardest).

6 of 10 https://doi.org/10.1073/pnas.2123433119 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123433119/-/DCSupplemental

Automatically Generating New Questions. We generate new
questions for each course and topic by prompting Codex with
numbered human-written questions to generate the next

question automatically. Specifically, we create prompts of 25
randomly selected problems for which Codex generates correct
answers, remove the questions after a randomly chosen

Fig. 7. Visualization of embeddings of course questions: We embed the course questions into a 2,048-dimensional space using OpenAI’s text-similarity-bab-
bage-001 embedding engine, which captures semantic similarity between texts. We then use uniform manifold approximation and projection to reduce the
dimensionality to two. This shows distinctive clusters based on topics. We see clusters of questions from MIT’s 18.06 Linear Algebra and Columbia’s
COMS3251 Computational Linear Algebra at Top Right. At Left, we see a cluster of the questions from MIT’s 18.01, 18.02, and 18.03. At Bottom Right, we see a
cluster of the questions from MIT’s 18.05 Introduction to Probability and Statistics and 6.042 Mathematics for Computer Science, covering probability and
statistics.

Machine Generated
Human Written

1

2

3

4

5

18.01 18.02 18.03 18.05 18.06 6.042
Course

D
iff

ic
ul

ty

A

Human Written Machine Generated

18.01 18.02 18.03 18.05 18.06 6.042 18.01 18.02 18.03 18.05 18.06 6.042
0.00

0.25

0.50

0.75

1.00

Course

Pc
t.

Rated as Not Appropriate Rated as Appropriate

B
Human Written Machine Generated

18.01 18.02 18.03 18.05 18.06 6.042 18.01 18.02 18.03 18.05 18.06 6.042
0.00

0.25

0.50

0.75

1.00

Course

Pc
t.

Rated as Human Written Rated as Machine Generated

C

Fig. 8. Student survey results. A compares the level of difficulty of human-written questions and questions generated by our approach for each course
based on the student ratings. The plot shows the means of the difficulty ratings between 1 (easiest) and 5 (hardest) and their 95% CIs. B shows the percent-
age of human-written and machine-generated questions rated as appropriate and not appropriate for the course. C shows the percentage of human-
written questions rated as human written or machine generated (Left) and the percentage of machine-generated questions rated as human written or
machine generated (Right).

PNAS 2022 Vol. 119 No. 32 e2123433119 https://doi.org/10.1073/pnas.2123433119 7 of 10

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

question in the list, and have Codex complete the next new
question. We present 130 new questions generated by Codex
in SI Appendix to demonstrate this capability. These include 10
new questions for each of the seven courses and each of the six
MATH topics. Table 2 shows one generated question for each
class and MATH topic. Generating a question takes less than
1 s. We can generate an arbitrarily large number of questions,
demonstrating that this is a practical and effective method for
creating new course content.

Student Survey Results. Fifteen participants completed our sur-
vey, answering questions about all 60 questions, taking a median

of 40 min. Fig. 8 summarizes the results of the student survey
comparing human-written and machine-generated questions. Fig.
8A compares the difficulty level of human-written questions and
the machine-generated questions for each course based on the
student ratings. The plot shows the means of the difficulty ratings
between 1 (easiest) and 5 (hardest) and their 95% CI. Fig. 8B
shows the percentage of human-written and machine-generated
questions rated by students as appropriate or not appropriate for
the courses. Fig. 8C shows the percentage of human-written ques-
tions rated as human written or machine generated (Left) and the
percentage of machine-generated questions rated as human writ-
ten or machine generated (Right).

Table 2. Examples of new questions generated automatically by Codex for each course and the most similar
question from its course

ID Course Machine-generated question Most similar human-written question Similarity

1 18.01 Single-Variable
Calculus

Find the area of the region bounded by the
curve and the x axis. y = x2 sin(x), 0 ≤ x ≤ π.

Find the area of the region under the given
curve from 1 to 2. y = (x2 + 1)/(3x � x2).

0.61

2 18.02 Multi-Variable
Calculus

Find a × b. a = h9, �2, 1i, b = h�2, 1, 1i Find a × b. a = h5, �1, �2i, b = h�3, 2, 4i. 0.87

3 18.03 Differential
Equations

Use the method of separable variables to solve
the initial-value problem dy

dx ¼ 5ex,yð2Þ ¼ 12
when x = 2.

Separate variables and use partial fractions to
solve the initial value problems. Use either
the exact solution or a computer-generated
slope field to sketch the graphs of several
solutions of the given differential equation
and highlight the indicated particular
solution.
f0(x) = 3f (x)(5 � f (x)), f (0) = 8.

0.21

4 18.05 Introduction to
Probability and Statistics

Let X be a uniformly distributed random
variable over the interval [0, 1). Find E[X2].

Let X be the result of rolling a fair four-sided
die. Let Y be the result of rolling a fair six-
sided die. You win 2X dollars if X > Y and
lose 1 dollar otherwise. After playing this
game 60 times, what is your expected total
gain?

0.29

5 18.06 Linear Algebra Write a Matlab code to determine whether the
given matrix A = [1, 1; 4, 4] is positive
semidefinite and if it is negative
semidefinite.

Find A0A if the columns of A are unit vectors, all
mutually perpendicular.

0.21

6 6.042 Mathematics for
Computer Science

A student is taking a test consisting of n
multiple-choice questions. Each question
has five possible answers, and only one is
correct. The student knows that the
probability that any particular question is
answered correctly is 1

5 Let X be the number
of questions answered correctly by the
student. What is E(X)?

MIT students sometimes delay laundry for a
few days. Assume all random values
described below are mutually independent.
A busy student must complete three
problem sets before doing laundry. Each
problem set requires 1 d with probability 2

3
and 2 d with probability 1

3 Let B be the
number of days a busy student delays
laundry. What is E(B)?

0.47

7 COMS3251 Computational Find a combination of the vectors"1 2 3
4 5 6
7 8 9

#
that gives the vector ½123�.

Find a combination of the vectors"1 2 3
4 5 6
7 8 9

#
that gives the zero vector.

0.90

8 MATH Pre-Algebra How many four-digit positive integers are
there with hundreds digit 2?

How many four-digit positive integers are
there with thousands digit 2?

0.90

9 MATH Algebra Find the distance between the points (0, 0) and
(3, 4).

Find the distance between the points (0, 4) and
(3, 0).

0.99

10 MATH Number Theory Find the smallest positive integer n such
that n2 is divisible by 210 and n3 is divisible
by 310.

How many four-digit numbers whose digits
add up to 9 are divisible by 11?

0.25

11 MATH Counting and
Probability

How many ways are there to divide a set of 10
objects into two sets of equal size?

Compute

8
4

!
. 0.12

12 MATH Intermediate
Algebra

Let x and y be positive real numbers such that
x2 + y2 = 1. Find the maximum value of xy.

Given that x2 + y2 = 14x + 6y + 6, find the
largest possible value of 3x + 4y.

0.59

13 MATH Precalculus Let A be the matrix"1 2 3
4 5 6
7 8 9

#
. Find the determinant of A2 + A3.

If det(A) = 2 and det(B) = 12, then find det(AB). 0.41

8 of 10 https://doi.org/10.1073/pnas.2123433119 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2123433119/-/DCSupplemental

The student survey results are summarized as follows:

• Survey participants rated our machine-generated and human-
written questions to be similar in difficulty within CIs.

• Survey participants rated human-written questions slightly
more appropriate for the courses than machine- generated
ones.

• Survey participants rated human-written questions more
likely to be human written as shown in Fig. 8 C, Left. Survey
participants rated machine-generated questions equally
likely to be machine generated and human written as shown
in Fig. 8 C, Right.

Human Level. With our methodology, Codex reaches human
performance levels in the contexts of both solving existing
questions and generating new content. We achieve 81% auto-
matic accuracy in solving mathematics course problems at
MIT and Columbia, comparable to typical student perfor-
mance on these problem sets in our MIT and Columbia Uni-
versity courses. Furthermore, we automatically generate new
questions that are indistinguishable to students from human-
written course questions.

Implementation Details. We make our data and code publicly
available (19). We use the latest version of OpenAI’s GPT-3
text-davinci-002 and Codex codex-davinci-002 engines for all
of our experiments. We fix all of Codex’s hyperparameters to
be the same for all solution and explanation experiments to
yield deterministic and reproducible results. Specifically, top P,
which controls diversity, is set to 0 and sampling temperature,
which controls randomness, is also set to 0. The frequency and
presence penalties are set to 0, and we do not halt on any stop
sequences. We allow diversity and randomness for all new question
generation experiments by setting the top P and temperature to
0.1. Each prompt is structured as a Python documentation com-
ment surrounded by triple quotations and line breaks. We evaluate
the solution by running the generated program using a Python
interpreter. Evaluations are considered correct if the printed output
or the value returned by the generated program is the cor-
rect solution.
Few-shot learning prompts are structured as follows: For

each question–code example being used, we insert the question
in a docstring on the following available line, have a line break,
and then insert the code on the following lines. After all the
examples, we insert the target question at the end in the same
way as described above and prompt Codex.
CoT prompts for GPT-3 are implemented by adding the

text “Let’s think step by step” (7) after the few-shot questions
and answers and the new question.

Types of Problems the Model Cannot Solve. There are a few
different types of problems the model is incapable of solving:
1) any problem for which the question is in the form of an
image or other nontext modality; 2) questions with solutions
that require proofs; and 3) problems that are computationally
intractable, such as factoring very large primes. This last cate-
gory is not expected in any math course assignment, as students
themselves would also be unable to answer them. That being
said, many questions that students can answer have generaliza-
tions that are computationally intractable.

Conclusion

We demonstrate that few-shot learning and program synthe-
sis using OpenAI Codex is able to solve, explain, and

generate university-level mathematics problems at a human
level. In contrast, previous methods using transformers pre-
trained only on text, such as GPT-3, fail on these tasks. We
verify that our strong results are not overfitting the training
data by solving a new course that is not available online. We
also generate and analyze new problem sets. The success of
this work confirms that programs serve as a good representa-
tion and computation environment for solving math prob-
lems. Since our approach requires no additional training, it
is easily scalable. This work addresses significant pedagogical
challenges, bringing substantial benefits to higher education
like curriculum design and analysis tools and automatic con-
tent generation.

We show that neural network synthesis with modern pro-
gramming languages is more dynamic and widely applicable
than expression trees and likely solves a broader range of
problems. Although any finite computation could be
expressed as a sufficiently large expression tree, one may see
an arbitrarily large expansion in the size of the expression
tree needed, as opposed to a Turing-complete language. This
flexibility is bolstered by the massive corpus of existing pro-
grams, which eclipses the number of labeled expression trees
available. Program outputs are also inherently more human
readable, as the ability to use abstraction, modularity, and
high-level logic leads to more explicit illustrations of the
path to a solution. Furthermore, program synthesis can con-
vey logical deductions directly through explanatory com-
ments and function and variable names. In particular, we see
such descriptive text and derivations in a number of the
Codex outputs. The unification of such formal and informal
language is an inherent advantage of our methodology. We
emphasize that the results may be complex and multimodal.
For example, by using packages such as Matplotlib, we can
produce graphs of equations. This advanced and unique abil-
ity is time consuming for humans and offers a significant
pedagogical benefit.

In summary, we automatically solve, explain, and generate
university-level mathematics course questions in real time at a
human level (20). Students rated machine-generated questions
as equally likely to have been human written as machine gener-
ated. Students also rated machine-generated questions as simi-
larly difficult to human-written questions and most appropriate
for their respective courses. Finally, we have succeeded in scal-
ing up this work to over 30 STEM courses across 13 depart-
ments in science and engineering schools at MIT and Ivy
League universities, with excellent results.

Data Availability. Data and code have been deposited in Github (https://
github.com/idrori/mathQ).

Author affiliations: aDepartment of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, United States of
America; bDepartment of Computer Science, Columbia University, New York, NY 10027,
United States of America; cDepartment of Mathematics, Massachusetts Institute of
Technology, Cambridge, MA 02139, United States of America; dDepartment of
Mathematics, Harvard University, Cambridge, MA 02138, United States of America;
eMedia Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United
States of America; fDepartment of Physics, Harvard University, Cambridge, MA 02138,
United States of America; gSchool of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada; and hDepartment of Physics and Kavli Institute for
Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge,
MA 02139, United States of America

Author contributions: I.D., N.S., N.V., E.W., and G.S. designed research; I.D., S.Z., R.S.,
L.T., A.L., E.K., L.C., S.T., N.C., R.W., N.S., T.L.P., J.L., and A.S. performed research; I.D.,
S.Z., R.S., A.L., K.L., N.C., R.W., N.S., and A.S. analyzed data; and I.D., S.Z., N.S., A.S., N.V.,
E.W., and G.S. wrote the paper.

PNAS 2022 Vol. 119 No. 32 e2123433119 https://doi.org/10.1073/pnas.2123433119 9 of 10

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

https://github.com/idrori/mathQ
https://github.com/idrori/mathQ

1. C. Q. Choi, 7 revealing ways AIs fail: Neural networks can be disastrously brittle, forgetful, and
surprisingly bad at math. IEEE Spectr. 58, 42–47 (2021).

2. A. Vaswani et al., “Attention is all you need” in Proceedings of Advances in Neural Information
Processing Systems (2017), eds. I Guyon, et al. (Curran Associates, Inc., Long Beach, CA), vol. 30.

3. T. B. Brown et al., “Language models are few-shot learners” in Proceedings of Advances in Neural
Information Processing Systems (2020), eds. H Larochelle, M Ranzato, R Hadsell, MF Balcan, HT
Lin. (Curran Associates, Inc., Virtual), vol. 33, pp. 1877–1901.

4. D. Hendrycks et al., “Measuring massive multitask language understanding” in Proceedings of the
International Conference on Learning Representations (2021), eds. A Oh, N Murray, I Titov (Virtual).

5. D. Hendrycks et al., “Measuring mathematical problem solving with the MATH dataset” in Proceedings
of Advances in Neural Information Processing Systems: Datasets and Benchmarks (2021), eds. J
Vanschoren, S Yeung. (Virtual), vol. 1.

6. J. W. Rae et al., Scaling language models: Methods, analysis & insights from training Gopher.
arXiv e-prints (2021) https://arxiv.org/abs/2112.11446 (accessed: Jan 21, 2022).

7. T. Kojima, S. Shane Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large language models are zero-shot
reasoners. arXiv e-prints (2022) https://arxiv.org/abs/2205.11916 (accessed: Jun 9, 2022).

8. M. Chen et al., Evaluating large language models trained on code. arXiv e-prints (2021) https://
arxiv.org/abs/2107.03374 (accessed: Jul 14, 2021).

9. J. Shen et al., “Generate & rank: A multi-task framework for math word problems” in Proceedings
of the Conference on Empirical Methods in Natural Language Processing (2021), eds. MF Moens, X
Huang, L Specia, S Wen-tau Yih. (Association for Computational Linguistics, Punta Cana,
Dominican Republic), pp. 2269–2279.

10. K. Cobbe et al., Training verifiers to solve math word problems. arXiv e-prints (2021) https://arxiv.
org/abs/2110.14168 (accessed: Nov 18, 2021).

11. Z. Xie, S. Sun, “A goal-driven tree-structured neural model for math word problems” in Proceedings
of the International Joint Conference on Artificial Intelligence (2019), ed. S Kraus. (Macao, China),
pp. 5299–5305.

12. Q. Wu, Q. Zhang, J. Fu, X. J. Huang, “A knowledge-aware sequence-to-tree network for math word
problem solving” in Proceedings of the Conference on Empirical Methods in Natural Language
Processing (2020), eds. B Webber, T Cohn, Y He, Y Liu. (Association for Computational Linguistics,
Virtual), pp. 7137–7146.

13. J. Qin, L. Lin, X. Liang, R. Zhang, L. Lin, “Semantically-aligned universal tree-structured solver for
math word problems” in Proceedings of the Conference on Empirical Methods in Natural Language
Processing (2020), eds. B Webber, T Cohn, Y He, Y Liu. (Association for Computational Linguistics,
Virtual), pp. 3780–3789.

14. J. Zhang et al., “Graph-to-tree learning for solving math word problems” in Proceedings
of the Annual Meeting of the Association for Computational Linguistics (2020), eds.
D Jurafsky, J Chai, N Schluter, J Tetreault. (Association for Computational Linguistics,
Virtual), pp. 3928–3937.

15. S. Li et al., “Graph-to-tree neural networks for learning structured input-output translation with
applications to semantic parsing and math word problem” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing (2020), eds. B Webber, T Cohn, Y He, Y Liu.
(Association for Computational Linguistics, Virtual), pp. 2841–2852.

16. Z. Liang, J. Zhang, J. Shao, X. Zhang, MWP-BERT: Numeracy-augmented pre-training for math
word problems. arXiv e-prints (2021) https://arxiv.org/abs/2107.13435 (accessed: May 11, 2022).

17. S. Tran et al., “Solving machine learning problems” in Proceedings of the Asian Conference on
Machine Learning (2021), eds. VN Balasubramanian, I Tsang. (PMLR, Virtual), pp. 470–485.

18. L. McInnes, J. Healy, J. Melville, UMAP: Uniform manifold approximation and projection for
dimension reduction. J. Open Source Softw. 3, 861 (2018).

19. I. Drori et al.,Github repository for A neural network solves, explains, and generates universitymath problems by
program synthesis and few-shot learning at human level (2022) https://github.com/idrori/mathQ.

20. I. Drori et al., A neural network solves, explains, and generates university math problems by
program synthesis and few-shot learning at human level. arXiv e-prints (2022) https://arxiv.org/
abs/2112.15594 (accessed: May 30, 2022).

10 of 10 https://doi.org/10.1073/pnas.2123433119 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 1
72

.5
6.

2.
25

0
on

 J
an

ua
ry

 1
, 2

02
4

fr
om

 I
P

ad
dr

es
s

17
2.

56
.2

.2
50

.

https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2107.13435
https://github.com/idrori/mathQ
https://arxiv.org/abs/2112.15594
https://arxiv.org/abs/2112.15594

